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1. Introduction

About twenty-five years ago Garret Birkhoff (1959) indicated how positivity
arguments could be exploited in problems from nuclear reactor theory, and he
conjectured that infinite dimensional analogues of the Perron-Frobenius theo-
rem would provide the right framework for these kind of problems. Since then
it has proved that he was right and nowadays there exists a vast amount of
literature where methods from positive operator and semigroup theory are
used to study problems in linear transport theory. Moreover, within a few
years positive semigroup theory has become a new discipline in functional
analysis.

It is the purpose of this paper to indicate how positivity can be exploited
succesfully in linear models from structured population dynamics. Diek-
mann, Heijmans and Thieme (1984) investigate a linear model describing a
cell population reproducing by equal fission. The spectrum of the strongly
continuous semigroup associated with the problem is obtained (by applying a
spectral mapping theorem) from the spectrum of the corresponding generator.
This spectrum has been investigated in Heijmans (1985) using the positivity
of the resolvent.

In this paper we shall follow a different road, and use the positivity of the
semigroup itself. The advantage of this approach is that extensions to non-
autonomous situations are possible: e.g. Diekmann, Heijmans & Thieme
(to appear).

This paper consists of the following parts. In Sect. 2 we give a short
introduction to positive semigroup theory and prove a very general renewal
result. In Sect. 3 we describe a model, covering several examples in structured
population dynamics: we shall discuss five of these examples. Then in Sect. 4
we show how a semigroup can be associated with the problem and moreover
we shall represent this semigroup as an infinite series. At that place we shall
also state our main result concerning the asymptotic behaviour of solutions. In
order to prove this main result we apply the theory discussed in Sect. 2 which
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is permitted after some positivity and compactness conditions have been veri-
fied. This is successively done in Sect. 5 and Sect. 6. In Sect. 7 we make some
final remarks.

2. Some Results from Positive Semigroup Theory

Let X be a Banach space and L: X—X a closed linear operator. We denote
by o(L), Po(L) the spectrum and point spectrum of L respectively. We let p(L)
be the resolvent set and r(L) the spectral radius. #(L) and A4 (L) denote the
range and kernel of L respectively. For a bounded subset V of X the (Kurat-
owski) measure of noncompactness a(V) is defined as (e.g. Nussbaum (1970)):

oc(V):inf{d>0|there exist a finite number of sets V,,...,V, such that the

n
diameter of V; is less than d and V= | V;;. The measure of noncompactness
i=1

|L|, of the bounded linear operator L: X —X is by definition
|L|,=inf{m 2 0|a(L(V)) Em-«(V), for all bounded subsets V of X}.

The proof of the following result can be found in Nussbaum (1970).

Lemma 2.1. a) |L|,<|L|| for every bounded linear operator L.
b) |L,+L,|,S|L,|,+IL,|, for all bounded linear operators L, L,.
c) |L+ C|,=|L|, if L is bounded and C is compact.

Remark 2.2. 1t follows that |+|, induces a seminorm on the space of bounded
linear operators on X (see Nussbaum (1970)).

Definition. The (Browder) essential spectrum o, (L) of L is defined by:
Aea, (L) if at least one of the following conditions holds
(1) A 1is a limit point of o(L),
(2) (AI1—L) is not closed,
(3) | A ((AI—L)y" is infinite dimensional.
kz1

Browder (1961) has proved that for a closed operator L, ieg(L)\o.(L)
implies that 1 is an eigenvalue of L and, moreover, 4 is a pole of the resolvent
R(A,Ly=(AI—L)~"' of finite rank. Such an eigenvalue is called a normal eigen-
value. For a bounded operator L, r. (L) denotes the radius of the essential

spectrum, i.e. 7,. (L) =sup{|i||1€0,.(L)}. Nussbaum (1970) proved the following

result: .

Fo(L)=lim | L*|7. (2.1

n-+ ¢

Let A4 be the generator of a strongly continuous semigroup T(t), =0 (Pazy
(1983)). We can properly define

o =0,(T(0) = lim ~log | (0], (22)

oo L
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1
ey =W (T(0)=lim —log| T (1) (2.2b)

t—

with the conventioq that log0= —o0. wy(T(?)) is called the growth bound and
W (T (1)) the essential growth bound. It can be proved that

HT@)=e"", 1 (T@)=e%' >0, (2.3)
where e™* =0. The spectral bound s(4) of the generator A4 is defined by

s(A)={Re/|iea(A4)}, (2.4)

where s(4)= —oo if this set is empty. Then

0o(T(1)) = max {s(4), o, (T(1)}- (2.5)

These results can be found in Priiss (1981) in a slightly different formulation

(see also Webb (1985)). A standard result in semigroup theory (e.g. Webb
(1985)) says:

For all w>w, there is M(w)=1 such that || T(¢)|| £ M (w)e®, for all t=0.
(2.6)

A question which is very important in many applications is whether or
not s(A)=w,(T(t)) and how the peripheral spectrum o,(A4) of A4, (o _(A4)
={iec(A4)|ReA=5(A)} if s(4)> — and o (4)=2 if s(4)= —o0) looks like.
Very precise answers to these questions are known for so-called positive semi-
groups. Let us first give some definitions. For the rest of this section we
assume that X is a Banach lattice and we let X, be the cone of positive
elements (Schaefer (1974)). We denote by X* the dual space and by X* the
dual cone. Finally we let {(F, ) be the duality pairing for ¢eX, FeX*,

Definition. The semigroup T(t) is called positive (ie. T(t)=0) if T(t) leaves the
cone invariant for all t=0. We call T(¢) irreducible if for every ¢peX ., ¢ =0,
FeX*, F=0 there exists a t>0 such that {(F, T(t)¢> >0.

Remark 2.3. Proposition I11.8.3 of Schaefer (1974) shows that this definition is
equivalent to Schaefer’s original definition.
The following theorem has been proved by Greiner (1981).

Theorem 2.4. Let A be the generator of a positive irreducible semigroup T(t) and
suppose that s(A) is a pole of the resolvent, then o (A)=s(A)+iaZ for some
real 020, and every element s(A)+iok, keZ is a pole of order one of the
resolvent, and moreover its geometric multiplicity is one.

We can now characterize the peripheral spectrum o (4) under an ad-
ditional assumption. Compare Corollary 1.7 of Greiner (1984a).

Theorem 2.5. Let T(t) be a positive irreducible semigroup with generator A such
that s(A) is a pole of the resolvent. Suppose moreover that

0o (T (1) > (T (1)), (2.7)

then there is an &> 0 such that ReA<s(A)—e for all iec(A), L+s(A4).
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Proof. Since the part of the spectrum at the right of the vertical line Rel
= w,(T(t)) contains only (normal) eigenvalues and therefore is “faithfull” to
the spectrum of the semigroup (Pazy (1983)), ie. {e'*|leca(4), Rei>w.}
={uea(T) ||pu|>r(T()} it follows that it suffices to show that o +(:4)
={s(A)}. Suppose not. Then ¢, (A4)=s(A)+iaZ for some a20. This implies
that the closure of the set {e e |keZ} is contained in o(T(t)). If at/m is
irrational (and this is true for ae. t>0) then {u||ul=e"?"}<o(T(r)), yielding
that w_ (T (t)) = s(4) which contradicts w.(T(t))<w(T(t). O

Let y=s(A) and let y, F, be the associated positive eigenvector and
adjoint eigenvector,

€ess

AYo=7Yo  A*Fo=yF, (2.8)
normalized by the conditions

“‘l’o(l:L <F0,l,00>=1. (2-9)

Remark 2.6. If for example X =L'(u) for some o-finite measure space (Q,%, u),
then Y, and F, are positive a.e. (Schaefer (1974)).
We let R, be the one-dimensional strictly positive projection

R¢=(F,® o) 0= (Fo, dDy  PeX. (2.10)

The large time behaviour of solutions n(t)=T(t)¢ of the abstract Cauchy
problem

dn
D—tn n0)=0 @.11)

is characterized by the following theorem.

Theorem 2.7. Let A be the generator of the positive, irreducible semigroup T(t)
Jor which the inequality . (T(t)) holds. Then there exist constants
&, M >0 such that for all e X the following estimate holds.

le=" T p—Fypll=Me "|¢l, 20 (2.12)

where y and P, are defined above.

Proof. Let >0 be determined by Theorem 2.5 such that Y—e>w, (T(). If
nea(T@), p+e’ then |u<e"=9". Let Z=%R(e"I—T(t)) (which does not de-
pend on 1) and let T,(t) denote the restriction of T(r) to Z, then T,(t) defines a
strongly continuous semigroup. Since o(TL()=a(T(t)\{e"}, we have
r(T7()<e’ 9" t>0. Therefore wy(T,(t)<y—¢ and we get  that
TP SMe "9 p|, peZ for some positive constant M (see (2.6)). Now let
¢ eX. Clearly ¢=FR ¢ +(I-F)p,T(t)Pyp=¢""P,¢ and | T —=FR)$|l =T,
(I —=F)pl =Me" 2 |(I-R)p|| <M e~9"|p||. This yields the result. [

In the subsequent sections we shall apply these results to a concrete prob-
lem in structured population dynamics.
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3. The Model and Some Examples

Consider a biological population whose individuals are completely character-
ized by the one- dimensional quantity x. We say that x is the state of the
individual and we assume that [0, 1] is the state space of the population: this
means among others that indeed all states 0<x=<1 (with the possible exception
of 0 and 1) can be reached eventually by some individual. We assume that
individuals with state x=4 can jump instanteneously to some lower state x ~4
where 0<A4 <1 is a fixed parameter.

Let n(t,x) be the function representing the distribution of the individuals

x2

over all individual states xe[0, 1] at time ¢, ie. f n(t, x)dx is the number of

X1
individuals with state between x, and x, at time t. Let ¢(x) denote the state
distribution at time t =0, then n(t, x) can be computed from:

0
EJ—Z(I, x)+—§;(g(x)n(t, x)=a(x)n(t, x) —b(x)n(t, x) + b(x+4) n(t, x+ 4), (3.1a)
where one should read b(x+ A)n(t,x+4)=0if x+4>1,

g2(0)n(t, 0)=§h(x)n(t, x)dx, (3.1b)
0

n(0, x) = ¢ (x). (3.1¢)

Here g(x) denotes the growth rate accounting for the fact that between two
jumps the state of an individual increases continuously according to the or-

dinary differential equation

dx

—=g(x). (3.2)

o(x) denotes the entrance (if o(x)=0) - disappearance (if a(x)<0) rate; a very
well known example of disappearance is provided by death. b(x) is the jump
rate and h(x) the reproduction rate. The boundary condition (3.1b) expresses
the fact that all newborns obtain the state x=0 at birth. We refer to the lecture
notes edited by Metz and Diekmann (in prep.) where it is explained in great
detail how to derive balance equations constituting structured population
models.

We define X (¢, x) as the state of an individual at time t given that its state
at time zero was x and no jumps have occurred meanwhile. Then X (¢, x) is the
solution of the ordinary differential equation

f%=g<X), X(0,x)=x.

The curves r—(t, X (t, x)), where 0<x <1, are the characteristic curves of (3.1a).
We shall study the initial value problem (3.1) in L'[0, 1], which seems to be

the most natural choice. So we assume that ¢ e L'[0, 1]. Let n(r) be given by

n(t)(x)=n(t, x), xe[0, 1]. We call n(t, x) a solution of (3.1) if and only if



604 H.J.A.M. Heijmans

(1) n(t)eL'[0,1], t=0 and r—n(t) is continuous as a mapping from IR,
into L!'[0,1].

(2) n is differentiable along the characteristics of (3.1a), i.e. for all t>0 and
O<x<l

(X (h, x)yn(t+h, X (h,x)) —g(x)n(t, x)
h

(Dn)(t, x)=1lim [ ] exists.

h—0

(3) Forallt>0and O<x<1

g_(lx—)‘ (Dn)(t, x)=a(x) n(t, x) =b(x) n(t, x) +b(x + 4) n(t, x + 4),

n(t,0)={h(x)n(t,x)dx, >0,

0

n0,x)=¢(x), 0=x=I1.

Remark 3.1. In the probability-theoretic literature (3.1a)-(3.1b) is called the
forward equation. In some problems it seems biologically more relevant and/or
mathematically easier to study the associated backward equation (for instance
in the space of continuous functions). For an example we refer to Heijmans
(1984b) where we study the “backward formulation™ of the problem described
in Example 3.9.

In order to obtain a well-defined mathematical problem we have to make
some assumptions, which fortunately do hardly limitate the applicability to
biological models.

Assumption 3.2. ¢,h,b and g are continuously differentiable on [0, 1]. More-
over h, b and g are nonnegative.

Smoothness is assumed to keep the forthcoming analysis surveyable. With-
out doubt it can be weakened without yielding essentially new biological
phenomena (see Sect. 7). Positivity of h, b and g follows immediately from the
biological interpretation.

Assumption 3.3 a) g(x)>0, xe[0,1), g(1)=0 and g'(1)=*0.
b) g(x+4)<g(x), 0£x<1—4.

This is our most important and also most restrictive assumption. A biologi-
cal implication is that an individual can never reach state x=1; a generation
(see Sect. 4 for a precise definition) never becomes extinct, and this has some
very important mathematical consequences. Observe that assumption 3.3a im-
plies that assumption 3.3b is satisfied in a neighbourhood of x =1 — 4. Biologi-
cally, assumption 3.3b means the following. Consider two individuals, both
with state x>/ at time t=0. The first individual jumps immediately to state x
—4 and finally reaches state x, =X (t, x —4) at time t. The second individual
starts growing first, and subsequently jumps back to state x,=X(t,x)—4 at
time 1. If g(x+4)*g(x) for all x then x,#x,. This implies that the jump
process provides a dispersion mechanism, separating individuals of one cohort.
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Before stating our third assumption we have to give some definitions. Let
a,€[0, 1] be the smallest value such that: h(x)=0, xe(a,, 1]. Let a,e[4,1] be
given by a,=min {a, + 4, 1}.

Assumption 3.4. If ah<1 then b(x)>0 on [a,,1]1n(4,1].
1

If b(1)=0 then j ( fmdc)d >1,
Where Y= ( ) (1) 08 ) 0 g(g)

The first part of assumption 3.4 says that every individual without regard
to its state has the possibility to reproduce at some future time instant
(perhaps after one or more jumps) or to reach a state arbitrarily close to zero.
In other words: every state between 0 and 1 is reachable for an individual or
its progeny. This implies that we have to do our bookkeeping on the whole
individual state space [0, 1] if we are interested in the time dependent develop-
ment of the population. The second part of assumption 3.4 is rather technical;
it is needed to settle estimate (2.7). It is easily seen that this last assumption is
fulfilled if b(1)+h(1)>0.

We shall now describe five examples from structured population dynamics
which can be reduced to system (3.1) by choosing a suitable new state de-
scription. Only in the first example we shall indicate how the assumptions 3.2-
3.4 are carried over to the new situation. In the other examples this is left to
the reader.

Example 3.5. Size Dependent Cell Growth. Consider a population of unicellular
organisms whose members are characterized by their size s. The population
reproduces by fission into two equal parts and the rate at which cells with size
s divide is given by B(s). We assume that f is C', B(s)=0 if s<a (where
O0<a<l) and B(s)>0 if s>a. Then the minimum possible size is a. Let
individual cell growth be governed by

B—[=V(5)
where y is a C'-function, y(s)>0 if $a<s<1, y(1)=0and y’(1)*0.

Finally we assume that the mortality rate u=pu(s) is a non-negative C'-
function. Let Ny(s), N(t,s) be the size distribution at time zero and time ¢
respectively:

(—;j—:lw(t,s) i(y YN(t,8))= —u(s) N(t,s)—B(s) N(t, $)+4 B(2s) N(t,25) (3.3a)
N(t,$a)=0, (3.3b)
N(0,8)=Ny(s). (3.3¢)

We define the state variable x by
logs
103 3a
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The inverse function s=S(x) is given by

1—x
s=S(=2"07"),
where 4= — 10g12 >0. If we put
logsa
n(t, x)=5'(x)-S(x)- N(t,S(x)), (3.4)

then (3.3) transforms into

%—: (t, x)+50; (g(x)n(t, x)) =0o(x)n(t, x) =b(x)n(t, x) + b(x + 4) n(t, x+ 4), (3.52)

n(t,0)=0, (3.5b)
n(0, x)= ¢(x), (3.5¢)
y(S(x)) (S (x))

where g(x)=

S0 o(x)= —,u(S(x))+——§(—>—J— and b(x)=f(S(x)), and where we

have used that S'(x+ 4)=2S"(x). Therefore this model fits into our framework.
X2

Remark 3.6. a) Observe that | n(t, x)dx is not a number, but a biomass since it

X2 X1 82
follows from (3.4) that j n(t, x)dx= fsN(t, s)ds, where s;=S(x,), i=1,2.
b) The cell division problem (3.3) has been extensively investigated by
Diekmann etal. (1984) for the case that growth remains bounded away from

zero in a neighbourhood of 1, but instead the rate (s) becomes infinite in such
1

a way that | f(s)ds=o0. In that case the cell cycle time is finite for all cells,

a

whereas this is not true in the model under consideration.

Example 3.7. Reproduction Causing a Decrease in Weight. Consider a popula-
tion whose individuals are characterized by their weight w which varies be-
tween w, and w,. An adult having weight w=(r+1)w, (where r is fixed and
(r+1)w,<w,) can give birth to r offspring (for instance eggs) all having the
same weight w,, thereby reducing its own weight to w—r-w,. Let = f(w) be
the reproduction rate which is identically zero on [wq, (r+1)w,], and let
i, 7, N, and N have the same interpretation as in the previous example.
The following equations hold:

ON

N W)+ () Nt W) = — W) N(t, w) = Bw) N (1, w)
Jt ow

+BW+rwy) N(t, w+rw,),
YW NG wo)=r | BW N(z w)dw,

(r+ 1) wo

N(0, w)=N,(w).
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] W—w,
If we define the new state x as: x=

, then this model provides a

W —w,
second example if B, u and y obey the conditions associated with assumptions
3.2-34.

Example 3.8. Populations Subject to Random Catastrophes. Consider a collec-
tion of populations. We assume that an individual (in our terminology this is a
population which is a member of the collection) is characterized by the
quantity s, denoting the size of the population. Furthermore we assume that
every individual is subject to growth,

ds
Et—_—'y(s)’

and to random catastrophes, which reduce the population size from s to p-s
where pe(0, 1) is fixed. We denote by fS(s) the rate at which catastrophes occur
and we assume that there exists a number ae (0, 1) such that (s)>0, s>a and
B(s)=0 elsewhere. With respect to y we make the meanwhile well-known
assumptions:

yeCl, p(5)>0 if s<1, y(1)=0, y(1)=*0.
Let N(t, s) be the size distribution then N obeys

JON 0 1, (s s
S 9+5 00N = —pONE+- 6 )N (7).

N(t, pa)=0,
N(0,s)=No(s),
where N, is the initial size distribution. A similar transformation as in Exam-

ple 3.5 carries the problem over into (3.1). We refer to Gripenberg (1983) for a
different approach.

Example 3.9. Holling’s Hungry Mantid Model. A fourth example is given by
the equation describing the probability distribution N(t,s) of the satiations s of
an invertebrate predator catching preys with fixed weight w at a rate S(s).

%—i] (t,5) —% (esN(t,s)) = —B(s) N(t, s)+ (s —w) N(t, s —w), (3.6a)
N (2, Smax) =0, (3.6b)
N(O, s)=Ny(s), (3.6¢)

where the satiation s, 0<s<s,,, between two catches decreases exponentially
with time
ds

——= —~C"S.
dt
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We refer to Metz and van Batenburg (1985) and Heijmans (1984b) for more
details.

In this case one can define the new state x by: x=1—
max

Example 3.10. Age Structured Populations. Our final example is studied exten-
sively in the literature (see Priiss (1981), Webb (1985). It concerns the growth of
an age-structured population on an infinite age-interval which excludes the
situation that the reproduction rate f(a), where a is age, obeys f(a)=0, a> A.
To reduce this problem to our formulation one can define the new state x by:
x=1—e"% where §>0 is fixed. Then

_dx _d_x_

== fe=%=0(1 —x).
glx dt da ¢ (1=x)

4. Semigroup Solution to the Problem and the Main Result

We can rewrite (3.1) as an abstract Cauchy problem on the space L' [0, 1]:

‘;_’Z=An, n(0)=, (4.1)

where the closed operator A is given by

d

(AY)(x)= == ()Y () +a ()Y (x) —bX)Y (x) +b(x + A) Y (x + 4), (4.2)

for all ¥ in the domain Z(A) of 4,

@(A):{lpeLl [0,1]]g- ¥ is absolutely continuous and

1
g(O)l//(0)=fh(X)lﬁ(X)dX}, (4.3)

0

which is densely defined. In this section we shall prove that A generates a
strongly continuous semigroup T(r) and we shall give a series representation of
this semigroup. First we write 4 as the sum of a closed operator B,

d
(BY)(x)= ~ 75 @YD) +a(x) ¥ (x) =b(x)Y(x), (4.4)

having the same domain as 4, and a bounded operator C given by

bix+M)y(x+4), 0Zx=1-4,

4.5)
0, x>1—4. (4-5)

(C!P)(X)={

A straightforward computation shows that B is the generator of a strongly
continuous semigroup, and now a standard result from semigroup theory (Pazy



Structured Populations, Linear Semigroups and Positivity 609

(1983)) says that 4 being the sum of B and a bounded operator C, also
generates a strongly continuous semigroup which we denote by 7'(t). The
solution n(t)=T(t)¢ of (4.1) can be represented by the series

=Y nn¥ z T, (4.6)
0
where the n,’s are obtained from

dng L o(gny)

ot Ox =(6(X)_b(x))n0(ta X), (473.)
g0)ny(t,0)= (4.7b)
1o (0, x)= <t>(x) 47c)
if i=0, and
on; d(gn,)
21t =@ =b) (e, x)+ b+ A)n_y (1, x+ 4), (4.82)
1
g(0)n,(t, 0)=[ h(x)n,_, (t, x)dx, (4.8b)
[}
(0, x)=0, (48¢)
if i=1.

Remark 4.1. Let S,(t) be the semigroup generated by B, then a variation-of-
constants formula applied to d—’Z=Bn+ Cn, with Cn being considered as the
inhomogeneous part of the equation, reduces the Cauchy problem (4.1) to the
integral equation n(t)= t)qb+[So(t——r Cn(t)dz, from Wthh by the method
of successive approximations, n() is found to be n(t Z S;(t)¢, where S;(1)
can be obtained from S,(t) and S,_,(r) by means of the formula S;(t)¢ =
iSo(t—r)CS,._l(r)qur, iz1. The above expansion is different from the one

given in (4.6) in the sense that the computation of T,(t)¢ involves the bound-
ary condition g(0)n(t,0)=0 whereas the computation of S,(t)¢ involves
1

g(0)n(t,0)={ h(x)n(t,x)dx and something similar holds for the other terms
(0]

Ti(0), S(0).
Now we shall reformulate the initial value problem (3.1) as an integral
equation from which all terms n,(t) in (4.6) can be computed. We pretend as if
1

the expressions b(x+4)n(t,x+4) and [h(x)n(t, x)dx in (3.1) are known &

0
priori, and compute the solution of the thus obtained inhomogeneous equation.
As a result we find the following integral equation:

E(x) {g(X(—t,X))

1
)= (e P8+ RO, Ode

t

+f —1, X))

) X( %) b(X(—'c,X)+A)n(t-r,X(—r,x)+A)dT}, (4.9)
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where
_7 4
(x)—£ 2 (4.10)
_ Ta(&)—b(E)
E(x)=exp Q S dé), (4.11)

(i.e. ©(x) is the time an individual needs to grow from state 0 to x) where one
should read n(t,x)=0 if t<0, and take a function of x to be zero if its argument
is not in [0, 1]. Now n,(t,x) can be computed from the formulae

CEM gX(—tx)
”o(l,x)—g(x) E(X(=t.%) o (X(—t,x)), (4.12a)
CE@ |} ) Cg(X (7))
(e, x)_—g(x) {gh(f)”i_df 7(x), f)dﬁ‘Fg —E‘(m

bX (=1, x)+)n,_(t—1, X(—-7, x)+A)d1:}, (4.12b)

with the same conventions as in (4.9). Observe that T,(t) defines a strongly
continuous semigroup.

Each function n; has a clear biological interpretation. n, represents the
members of the 0'th generation, ie. those individuals present at time zero
which have not experienced a jump yet. The i’th generation, represented by n,,
consists of the offspring of members of the (i—1)th generation, and those
individuals who were members of the (i—1)'th generation at an earlier time,
but have experienced one jump during the time elapsed. Observe from (4.12)
that a generation, once it has come into existence never goes extinct anymore.

The two following sections are concerned with the verification of the
conditions of Theorem 2.7:

1) T(¢) is a positive, irreducible semigroup.

11) wess(T(l))<w0(T([))-

We can state our main result now.

Theorem 4.2. There exists a constant yeR, a strictly positive projection P, of
rank 1 and positive constants M, e>0 such that for all p € L*[0, 1]

le="" T()¢ —Fydpll=Me~*|¢ll, ¢>0.

Moreover P, can be represented as Py=F,®Y,, where F,eL*[0,1] and
Y, €L [0, 17 are positive a.e.

This (renewal) theorem says that the population grows or decays exponen-
tially (depending on the sign of y) and the x-distribution becomes stationary if
t—o0. At t=o00 the dependence on the initial data is only reflected by the
constant {F,, ¢).
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5. Irreducibility of the Semigroup

In this section we shall establish irreducibility of T(t) with respect to the cone
L' [0, 1], consisting of all nonnegative functions of L'[0, 1]. Actually we shall
prove a much stronger result here. Let X (¢, x) be as in Sect. 3.

Theorem 5.1. There is a t* >0 such that n(t, x)>0, 0<x < X (t —t*,0), t >*.

The rest of this section is devoted to the proof of this result. Let us assume
for simplicity that the initial function ¢ is continuous and ¢(x)>0, xe(&5, &%),
where 0< &5 <&¢ < 1. This assumption does not mean a restriction of generali-
ty since one can easily see from (4.12) that n,(z, x) indeed obeys this assump-
tion if ¢ is large enough. Let £~ (1)=X (¢, &5) and E* (1)=X (1, ¢¢) and we define
T(x,y) as the time which an individual needs to grow from x to y, ie. T(x,y)
=1(y) —t(x) where 7 is given by (4.10).

Lemma 5.2, ny(f, x) >0, E-(t)<x <&t (1), t>0.
This result follows immediately from (4.12a).

Lemma 5.3. If n(t,x)>0, x;<x<x,, where a,<x,<x,<l1, then n(t,x)>0,
X, —A4d<x<x,—A4.

This result can easily be verified, using integral equation (4.9).
Lemma 5.4. If a,<1 then there exists a t,>0 such that n(t, 1 —4)>0if t>t,.

Proof. It follows from assumption 3.4 that b(x)>0 on (1 —¢, 1] for some &>0.
We choose t;,20 such that ™ (t;)>1—e. Let ty=t,+ T(E™(t,) —4, 1 —4). Since
XO0,1-)+4=1>¢,*() and X(—t+t,, 1—A)+4<X(—ty+1t,,1-4)+4
=¢7(t,), and from the continuity of X (.,1—4), £7(.) and ¢*(.) it follows that
there exist t,(t), 7,(t) for t>1t, such that: |

) O<t,()<1,(t)St—1,
il) if Te(r,(t), 7,(t)) then X(—1, 1 —=A)+A4e(E~(t—1), EF(t —1)).

T2(t)

Thus n(t,1—4)Zn,(t,1—4)2 | (something positive). (—% ¢) X(—t+r,
T1(1)

X(=1,1=A)+4))dt>0, t>t,, since X(—t+1, X(—1,1-4)+4)e(é;,E5) if
1€(t,(¢), 7, (1) This yields the result. O

Proof of Theorem 5.1. We have to distinguish between three cases:

i) a,=0. Let t, be such that n(t,1—4)>0, t>t,. Let geN and 6>0 be
such that 1-4=<qg4<1 and g4+3d<1. From the integral equation (4.9) it
follows that n(t,x)>0 if xe[1—4,94+0) and t>t,+T(1—4,q4+5)=t*
Now we obtain from Lemma 5.3 that n(t,x)>0 if xe(0,8) and t>t*. Thus
n(t,x)>0 if xe(0, X (¢t —t*,0)), t > t*.

ii) 0<a,<1. Using Lemmata 5.4 and 5.3 one can easily show that there is a
5, 0<d<a, and t*>0 such that n(, x)>0, xe(a,—9d,q,), t>t* From the
definition of a, and the integral equation (4.9) we obtain that n(z, 0)>0 if r>1*
and therefore n(t, x)>0, xe [0, X (t —t*,0)), t>t*.
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iii) @,=1. The definition of 4, yields that for * large, h is not identically
zero on (&7 (1), (1) if t>r*, and from Lemma 5.2 we may conclude that
n(t,0)>0 if t>¢*. Consequently n(t,x)>0 if xe(0, X (¢t —1t*0)), t>1t* and the
result is proved. [

Corollary 5.5. T(¢) is irreducible.

Remark 5.6. It is striking that the proof of this result does not require assump-
tion 3.3b. However to some extent this is an optical illusion since this assump-
tion has some relation with the condition g(1)=0, which is heavily exploited in
the proof. Corollary 5.5 can also be proved by using Proposition D.3 of Voigt
(1984).

6. The Inequality . (T(#))<wo(T(t))

One cannot expect the inequality
Wess(T(1)) <o (T(1)) (6.1)
to be true if not some sort of compactness of T(f) can be established. We write

T(t)=T,(1)+ U(1), where U(t)= ), T(t) and T;(r), i=0 is defined in Sect. 4.
i=1

Lemma 6.1. U (¢) is compact for all t20.

Proof. 1t suffices to show that T,(f) is continuous with respect to the uniform
operator topology and compact, since all the other terms T(f) are obtained
from T,(¢) by integration. From (4.12) we obtain that

() =28 S p EQ) (2 -
(T $))=n, (6= 5 {gh(y) 0 (Eo) (=i may

Lg(X(~1,x) E
+£m. (b..é.)(X(—r,x)-i-A)
: (%(p) (X(~t+T,X(—T,X)+A))dT}’

with the same conventions as in formula (4.9). We use an Arzéla-Ascoli-like
theorem to prove compactness. The first term is easy. In the second term we
substitute =X (—t+7, X(—1,x)+4) and a simple calculation shows that

dt _ g(X(—~1,x)+4)
d¢  g(&)-{g(X (=1, %)+ 4) —g(X (—1, x))}
and this expression never becomes zero if assumption 3.3b is satisfied. Now,

after making some tedious but straightforward estimates, compactness and
continuity with respect to the uniform operator topology follow. []

We obtain from Lemma 2.1 that
ITO,=To)+ U@, =T, < 1 T, )],
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and from (2.2), (2.3) we get
O (T(1) S, (T (2))- (6.2)
wo(Ty (1)) is obtained from the following lemma. Let
v=b(l)—-a(1). (6.3)
Lemma 6.2. There exist constants m, M >0 such that

me" | Ty SMe, 120,

Proof. It follows from assumptions 3.2 and 3.3a that there exist positive
constants ml,mz,m3,m4 such that m;(1—x)e <1 —-X(t,x)<m,(1—x)e™ "

and m5(1— )c<E(x)<m4(1 — ) where ¢c= —g'(1)>0. From (4.12a) we obtain
that

B R
T 1= Ing(e 9l de= [ =55 (-101) (X (=t ) dx
1 E X —ct‘}
e R e Sl L A PN VO Y
} T EQ : v

ms(1—¢&)

where M=%-m§. Similarly || T,(t)$|| =me=""||$||, where m=£3-m?1. O
3 4

This result implies that w,(T;(t))= —v and from (6.2) we get

Wess(T() = = (6.4)

(it is not difficult to show that the equality holds) and therefore we “only”
have to prove that
wo(T(t) > —v, (6.5)
or equivalently (see (2.5))
s(4)> —v, (6.6)

in order to settle (6.1). The rest of this section is concerned with the proof of
(6.6). The reader should observe that this is the only place where the generator
plays an essential role.

Let feL'[0,1]. The inhomogeneous equation Ay —Ay =f can be reduced
to

E (0 ! be+d)
= L[ h(& d
() {i WO+ ]

J©)
d 6.7
}E® Y(E+4) €+I } (6.7)

E, (&)
where
E,(x)=E(x) e~ A1), (6.8)
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As in the proof of the former lemma we can show that there exist positive
constants [, [, such that

v+Rel v+Rel

L(1=x)" ¢ SIE,IShLI-x) ¢, (6.9)

and these estimates yield that the separate terms at the right-hand-side of (6.7)
only make sense (i.e. define L'-functions) if v+ReA>0.

Now, for all 1eC with v+ Re 1>0 we define the bounded operators T}, U,
on L'[0,1] by

B9 ! = b(E+4) d}
(T, $)(x)= () {gh(é)cb(é)déﬂtg———-El(é) P&+ 4)dEy, (6.10)
U,8)00=229 7 28 4 hepo ), 6.11)

glx) o E;(¢

The following result is straightforward.

~

Lemma 6.3. If v+ReA>0 then T, and U, are compact.

Now for lep(A), ie. the resolvent set of A, we have (AI—A)~'f=
(I =T)"'U, f and we conclude that for all A with v+Re1>0 we have

lec(A)=AePa(A)=1ea(T).

Now suppose that 1 is real and v+ 1>0 then T, is positive and a famous result
of Krein and Rutman (1948) says that the spectral radius r,=r(T;) is an
eigenvalue. Thus, if there exists a A,> —v such that r(7T, )=1, then A,€0(4),
and therefore s(4)=4,> —v and in that case we are done. Since A—r(T))
is continuous and

lim r(7T;)=0,

A= 0

as one can show quite easily, it suffices to prove that

lim #(T))>1. (6.12)

Al =y
To this end we shall use the following result due to Krein and Rutman (1948).

Lemma 6.4. If L is a positive operator and  a positive, nonzero vector such
that Ly =c -, for some positive constant c, then r(L)Zc.

We shall distinguish between two cases.

(1) b(1)>0. Let leR, v+1>0. Some simple estimations using (6.9) show
that there is a positive constant C such that

(TAW)(XBC(l—x)“+‘"‘)fcb(é+d)l//(€+zl)d€. (6.13)
0

From b(1)>0 it follows that there is a §€(0, 4) and an n>0 such that b(x)>#,
xe(l1-4,1].
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Now let p=v+1€(0,1), e={/%- 5 and let Y ,€L7[0,1] be given by
Wp(x)=(1—x)“1“’, xe(l=08,1—¢),
¥,(x)=0, elsewhere.

From (6.13) it follows that

1—¢
(T ) ()2 C(1—x)~ 1+ yén-(l—x>-‘+*'dx=—§p1w,,(x),

and Lemma 6.4 yields that r(T _v+p)>-c—l-51’, hence limr(T,)= o0, so we have
established (6.12) in this case. 2p Al-v
(i) b(1)=0. Clearly T,y =S,¥, wel' [0,1], v+.>0, where (S,¥)(x)
E
A(x)jh(f E)de. Therefore rT,)2r(S,;). Clearly leg(S,) for some 2 with

v+/1>0 if and only if jh Z(( )) dx=1. It follows from the second part of

assumption 3.4 that there is a A*> —vy such that _fh( ) ;ES)C)

dx=1, hence
r(T)Z7(S,x) =1, and this implies (6.12). Now we have proved
Theorem 6.5. w, . (T(t)) <wq(T(2).

Remark 6.6. If b=0 and the second part of assumption 3.4 is not fulfilled, then
wo(T@)=wy(Ty(t))= —v. This can be proved in the following way: suppose
0o (T(1))>wo(Ty(1)). Then there is a ue®@, |p|>e™ " such that uec(T(t)). Since

c(A)n{A|lv+Rel>0}=g2

and the point spectrum and residual spectrum of the generator A and the semi-
group T(t) are faithfull (Pazy (1983)) we may conclude that y must be con-
tained in the continuous spectrum of T(¢). However this is contradicted by the
observation that

pI=T@O)=pl =Ty (1) = U@ =(u] = To(DU —(uI = To() = U (@),

and the compactness of U(t). Hence wy(T(t))=wq(T,(t))= —v. In this case we
may conclude from (2.6) that for all ¢> 0 there is a M(¢) >0 such that

ITt) ¢l =M(ee =" [4].

7. Final Remarks

In their papers on linear transport theory, Greiner (1984b) and Voigt (1984)
also exploit positivity properties of semigroups to determine their asymptotic
behaviour, and it is worth mentioning that also in these papers (and other
literature on linear transport theory) the inequality .. (T(t))<wo(T(?)) plays
an important role.

The equations in example 3.8 as well as in example 3.9 induce a semigroup
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T(t) which obeys |T(5)|=1, t=0, which says that there is conservation of
number. (This can easily be obtained by integrating the equations over all
values of s.) This yields that

W (T(1) <0 =w, (T (1)).

One can think of other situations where a similar conservation principle
provides an easy proof of the inequality (6.1), and in such cases, positive
semigroup theory is extra powerful.

If generations go extinct after finite time (for instance if g(1)>0; see
Remark 3.6b) then T,(1)=0, t>1(1) and hence T(t) is compact, t>1(1) imply-
ing that w,(T(t))=—o0, and also in this situation inequality (6.1) is a trivial
one. Unfortunately it is now also much more involved to prove irreducibility
of the semigroup T(t).

If we drop the assumption that b and ¢ are C' but instead impose the
weaker condition
[b(x) —a(x) - V]|

dx<oo,
g(x)

1

0

then all calculations remain valid.
We expect that the assumption

glx+4)<g(x), 0O0<x<l-—-4,

can be omitted, perhaps at the cost of a strengthening of the second part of
assumption 3.4. We refer to Sect. 8 of Diekmann, Heijmans and Thieme (1984),
where for a related problem it is shown how a weakening of such an assump-
tion induces (extra) essential spectrum.

If we allow the jump parameter 4 to take all values between 4, and 4,
where 0<4,<4,<1, and the probability of making a jump 4 is determined

43
by the smooth function p(4), | p(4)d4=1, then (3.1a) has to be replaced by
41

on

43
5 (t, x) +5(2x-(g(x) n(t, x))=(o(x) —b(x)) n(t, x) + fp(A)b(x-i— Ayn(t,x+4)dA.
4,

In this case the bounded perturbation C (see Sect. 4) is given by
42
(CY)x)= [ p(A)b(x+A) P (x+ 4)d 4,
4,

and this defines a compact operator. In this case compactness of U(r) follows
immediately, and does not require the assumption g(x+4)<g(x). We refer to
Heijmans (1984 a) for a related problem.

Finally we think it is important to notice that we can avoid the use of
Theorem 2.4 and prove Theorem 4.2 exploiting the fact that the semigroup
obeys a stronger positivity-condition than irreducibility (cf. Theorem 5.1),
namely: for all $eL', [0,1], ¢ +0 and FelL*[0,1], F&0 there is a t =t(¢b, F)=0
such that (F,T(t)¢)>0 for all t=t(¢,F). We shall call such a semigroup
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nonsupporting after a concept of Sawashima (1964). Using Sawashima’s result
on nonsupporting operators we can prove Theorem 2.5, where ‘irreducible’ is
replaced by ‘nonsupporting’, directly. We refer to Theorem 1.3 of Nussbaum
(1984) for a related result.
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